Mammalian motor neurons corelease glutamate and acetylcholine at central synapses.

نویسندگان

  • Hiroshi Nishimaru
  • Carlos Ernesto Restrepo
  • Jesper Ryge
  • Yuchio Yanagawa
  • Ole Kiehn
چکیده

Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery >60 years ago, it has been a general notion that acetylcholine is the only transmitter released from MN synapses both peripherally and centrally. Here, we show, using a multidisciplinary approach, that mammalian spinal MNs, in addition to acetylcholine, corelease glutamate to excite Renshaw cells and other MNs but not to excite muscles. Our study demonstrates that glutamate can be released as a functional neurotransmitter from mammalian MNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence

A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron micros...

متن کامل

Glutamate and acetylcholine corelease at developing synapses.

Most neurons release a single fast-acting low-molecular-weight transmitter at synapses to activate and open postsynaptic ion channels. We challenge this principle with evidence for corelease of the two major excitatory transmitters, glutamate and acetylcholine (ACh), from single identified neurons in the developing frog tadpole spinal cord. Whole-cell patch electrodes were used to record from s...

متن کامل

Corelease of two fast neurotransmitters at a central synapse.

It is widely accepted that individual neurons in the central nervous system release only a single fast transmitter. The possibility of corelease of fast neurotransmitters was examined by making paired recordings from synaptically connected neurons in spinal cord slices. Unitary inhibitory postsynaptic currents generated at interneuron-motoneuron synapses consisted of a strychnine-sensitive, gly...

متن کامل

Corelease of acetylcholine and GABA from cholinergic forebrain neurons

Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-syna...

متن کامل

Development and plasticity of the Drosophila larval neuromuscular junction.

The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 14  شماره 

صفحات  -

تاریخ انتشار 2005